Network Parse Documentation
Release 1.9.0

Ryan Morehart

Sep 22, 2021

Contents:

1 Getting Started 1
2 Parser Tutorial 3
2.1 Example Configurationo e e e e e e e e e 3
2.2 Step 1: Import the configuration L e e e e 4
2.3 Step 2: Simple Searches e e e e e 5
24 Step3: Navigating Results e 6
2.5 Step5: Filtering by Children L e e 7
2.6 Step6: ParsingLines L. e e e 8
2.7 NeXUSIEPS .« v v v o e 9
3 Complete API 11
3.1 Parsing e e e e 11
3.2 Parsing UtilS o o e e e e e e e e e 11
3.3 Searching oL e e e e e e e e 11
34 EXCEPUONS . . . v v it e e e e e e e e e e e e e e e e e e 11
4 Indices and tables 13

CHAPTER 1

Getting Started

networkparse is requires Python 3.6, but has no other dependencies.

pip install —--user networkparse

Network Parse Documentation, Release 1.9.0

2 Chapter 1. Getting Started

CHAPTER 2

Parser Tutorial

networkparser is designed to make navigating around a hierarchical network configuration file as simple as pos-
sible.

2.1 Example Configuration

All the examples below are based off this configuration:

running_config_contents = """
!

version 12.4

service nagle

no service pad

service tcp-keepalives—-in

|

hostname Foo
|
boot-start-marker
boot-end-marker
|
security authentication failure rate 4 log
security passwords min-length 6
|
interface FastEthernet0/0
ip address 172.16.2.1 255.255.255.0
ip access-group ETHO_O_IN in
ip access—group BLACKHOLE out
no ip unreachables
no ip proxy-arp
ip nat inside
ip virtual-reassembly
ip tcp adjust-mss 1452
load-interval 30

(continues on next page)

Network Parse Documentation, Release 1.9.0

(continued from previous page)

speed 100

full-duplex

no keepalive

no cdp log mismatch duplex
hold-queue 100 in

hold—-queue 100 out

|
interface FastEthernet0/1

ip address 172.16.3.1 255.255.255.0
no ip unreachables

|
interface FastEthernetl/0

ip address 172.16.4.1 255.255.255.0
no ip unreachables

shutdown

|

wow Strlp()

Note: We call strip () on the configuration. This isn’t necessary, it just removes the beginning and ending blank
lines.

For Cisco-style network devices, the config text is expected to be the exact output of show running-config,
show running-config all, or show startup-config. The exact supported commands are documented
for each parser in their respective classes. See Parsing for more information.

2.2 Step 1: Import the configuration

The first step in using networkparse will always be to import the network configuration:

from networkparse import parse
config = parse.ConfigIOS (running_config_contents)

print (config.tree_display (line_number=True, child_count=True))

1: ! (0 children)

2: version 12.4 (0 children)

3: service nagle (0 children)

4: no service pad (0 children)

5: service tcp-keepalives-in (0 children)
6: ! (0 children)

7: hostname Foo (0 children)

8: ! (0 children)

9: boot-start-marker (0 children)

10: boot-end-marker (0 children)

11: ! (0 children)

12: security authentication failure rate 4 log (0 children)
13: security passwords min-length 6 (0 children)

14: ! (0 children)

15: interface FastEthernet0/0 (15 children)

16: ip address 172.16.2.1 255.255.255.0 (0 children)
17: ip access-group ETHO_O_IN in (0 children)

18: ip access—-group BLACKHOLE out (0 children)

(continues on next page)

4 Chapter 2. Parser Tutorial

Network Parse Documentation, Release 1.9.0

(continued from previous page)

19: no ip unreachables (0 children)

20: no ip proxy-arp (0 children)

21: ip nat inside (0 children)

22 ip virtual-reassembly (0 children)

23: ip tcp adjust-mss 1452 (0 children)

24 load—-interval 30 (0 children)

25: speed 100 (0 children)

26: full-duplex (0 children)

27: no keepalive (0 children)

28: no cdp log mismatch duplex (0 children)
29: hold-queue 100 in (0 children)

30: hold-queue 100 out (0 children)

31: ! (0 children)

32: interface FastEthernet0/1 (2 children)
33: ip address 172.16.3.1 255.255.255.0 (0 children)
34: no ip unreachables (0 children)

35: ! (0 children)

36: interface FastEthernetl/0 (3 children)
37: ip address 172.16.4.1 255.255.255.0 (0 children)
38: no ip unreachables (0 children)

39: shutdown (0 children)

40: ! (0 children)

tree_display () is a convenience function for displaying the contents of a config or list of configuration lines.
When building out a series of searches to check a configuration, use tree_display () to help with debugging or
show the final lines of interest.

Note: We called tree_display () with 1ine_number=True here. For the remainder of the examples we
won’t do this.

2.3 Step 2: Simple Searches

2.3.1 Exact Matches

Let’s say we want to ensure this device is running the firmware version we expect. To do this, we’ll use filter ()
to get a list of all matching configuration lines:

lines = config.filter ("version 12.4")
print (lines.tree_display(child_count=True))

if lines:

print ("Version found")
else:

print ("Version not found")

version 12.4 (0 children)
Version found

Great! We found the matching line. If we were expecting a newer version of firmware:

2.3. Step 2: Simple Searches 5

Network Parse Documentation, Release 1.9.0

lines = config.filter ("version 15.0")
print (lines.tree_display (child_count=True))

if lines:

print ("Version found")
else:

print ("Version not found")

(empty line 1list)
Version not found

2.3.2 Regular Expressions

In the previous example, we used a string and searched for an exact match. Now we just want to explore which services
are enabled or disabled on the device. There are two approaches here, both of which will produce the same result:

Allow the string to match any where in the line, rather that requiring
it to match the entire line

print ("full_match=False:")

lines = config.filter ("service", full_match=False)

print (lines.tree_display (child_count=True))

Give a regular expression which allows "anything before this or anything after this"
print ("\nRegular expression:")

lines = config.filter(".xservice.x")

print (lines.tree_display (child_count=True))

full_match=False:

service nagle (0 children)

no service pad (0 children)

service tcp-keepalives-in (0 children)

Regular expression:

service nagle (0 children)

no service pad (0 children)

service tcp-keepalives—-in (0 children)

networkparse is using the Python 3 re library under the hood, so any supported regular expression there may be
used with filter ().

2.4 Step 3: Navigating Results

Let’s say we wanted to check the IP address of each of our interfaces. There are several approaches to this question,
each of which is explored below.

2.4.1 Accessing Children

Our first attempt at this will be find each interface, then get the ip address call within it.

6 Chapter 2. Parser Tutorial

https://docs.python.org/3/library/re.html

Network Parse Documentation, Release 1.9.0

interfaces = config.filter("interface .+")

for interface in interfaces:
You can get the exact content of a line by teating it like a string
print (interface)

You can access the children of a configuration line using .children
addr = interface.children.filter ("ip address .*") .one/()

print (addr)

print ()

interface FastEthernet0/0
ip address 172.16.2.1 255.255.255.0

interface FastEthernet0/1
ip address 172.16.3.1 255.255.255.0

interface FastEthernetl/0
ip address 172.16.4.1 255.255.255.0

In this example, we first get all the interfaces using filter (), which returns a list of configuration lines (a
ConfigLinelist). We then loop through that list, using children to access the configuration lines under each
interface. children is a ConfigLinelist just like our base configuration object, so filter () can be used
again.

Note: On the line addr_line = interface.children.filter ("ip address .x").one (), we
called one () atthe end. filter () returns a ConfigLineList, which may be any number of configuration
lines. Calling one () on a list when you expect only a single item will return just the single result, along with doing
some error checking to make sure the item actually exists.

2.4.2 Accessing Parents

Approach number two would be to find all the ip address calls and find the associated interface from that.

Using "depth=None", filter will find both direct children of line 1list OR
lines under any of the children
addr_lines = config.filter("ip address .+", depth=None)
for addr in addr_lines:
interface = addr.parent

print (interface)
print (addr)
print ()

Output will be the same as Accessing Children.

2.5 Step 5: Filtering by Children

Often when looking at interfaces, VLANSs, or ACLs you’ll need to find only those items that are configured a cer-
tain way. You could do this the manual way, using a pattern similar to what was shown in Accessing Parents, but
networkparse also offers filter_with_child().

2.5. Step 5: Filtering by Children 7

Network Parse Documentation, Release 1.9.0

If we wanted to find any interfaces that are shutdown:

interfaces = config.filter("interface .+").filter_with_child("shutdown™)
print (interfaces.tree_display(child_count=True))

interface FastEthernetl/0 (3 children)
ip address 172.16.4.1 255.255.255.0 (0 children)
no ip unreachables (0 children)
shutdown (0 children)

In a single line, we do two steps:
1. Find all interfaces

2. From that list of config lines, remove any that don’t have “shutdown” as a child

Note: Because filter ()’s(and filter_with_child()’s) default to requiring a full line match, our search
won’t accidentally match “no shutdown” lines as well.

2.6 Step 6: Parsing Lines

In many auditing situations you need to check configuration parameters against an “acceptable” value. For example,
let’s say we need to verify the authentication failure rate is less than 5. For this, networkparse usage relies on
standard Python string functions like split (). In more advanced cases, using the re module with match groups.

First, a verbose version:

Find our line
auth_line = config.filter(r"security authentication failure rate .x").one()
print (f"Line: {auth_line ")

Break the line up at each space
parts = auth_line.split ()
print (parts)

Get the number as text and convert it to a number so we can comparse
rate = int (parts[4])
print (f"Rate: {(rate}")

if rate < 5:

print ("Rate is correct")
else:

print ("Rate is too high")

Line: security authentication failure rate 4 log

['security', 'authentication', 'failure', 'rate', '4', 'log']
Rate: 4

Rate 1is correct

In the real world, you’ll likely be more succinct:

auth_line = config.filter(r"security authentication failure rate .x").one()
rate = int (auth_line.split () [4])

(continues on next page)

8 Chapter 2. Parser Tutorial

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/re.html
https://regexone.com/lesson/capturing_groups

Network Parse Documentation, Release 1.9.0

(continued from previous page)

if rate < 5:

print ("Rate is correct")
else:

print ("Rate is too high")

’ Rate 1is correct

2.7 Next Steps

The API documentation displays all the functionality available in networkparse, including methods not covered
here and more arguments available on filter ().

2.7. Next Steps 9

Network Parse Documentation, Release 1.9.0

10 Chapter 2. Parser Tutorial

CHAPTER 3

Complete API

3.1 Parsing

3.1.1 Automatic Parsing

3.1.2 Base Configuration Manager

ConfigBase will almost never be directly created, but it’s functionality is shared by all other configuration classes.
To avoid duplicate documentation, refer back to this class for complete details on what a configuration type offers.

3.1.3 Cisco
3.1.4 Fortinet
3.1.5 HP

3.1.6 Juniper

3.2 Parsing Utils

3.3 Searching

Once a ConfigBase has been created, searching is typically done using ConfigLineList and ConfigLine.

3.4 Exceptions

11

Network Parse Documentation, Release 1.9.0

12 Chapter 3. Complete API

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

13

	Getting Started
	Parser Tutorial
	Example Configuration
	Step 1: Import the configuration
	Step 2: Simple Searches
	Step 3: Navigating Results
	Step 5: Filtering by Children
	Step 6: Parsing Lines
	Next Steps

	Complete API
	Parsing
	Parsing Utils
	Searching
	Exceptions

	Indices and tables

